3.2.1 \(\int \frac {1}{x^3 \sqrt {a+b x+c x^2} (d-f x^2)} \, dx\) [101]

3.2.1.1 Optimal result
3.2.1.2 Mathematica [C] (verified)
3.2.1.3 Rubi [A] (verified)
3.2.1.4 Maple [A] (verified)
3.2.1.5 Fricas [F(-1)]
3.2.1.6 Sympy [F]
3.2.1.7 Maxima [F]
3.2.1.8 Giac [F(-2)]
3.2.1.9 Mupad [F(-1)]

3.2.1.1 Optimal result

Integrand size = 28, antiderivative size = 376 \[ \int \frac {1}{x^3 \sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=-\frac {\sqrt {a+b x+c x^2}}{2 a d x^2}+\frac {3 b \sqrt {a+b x+c x^2}}{4 a^2 d x}-\frac {\left (3 b^2-4 a c\right ) \text {arctanh}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{8 a^{5/2} d}-\frac {f \text {arctanh}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d^2}-\frac {f^{3/2} \text {arctanh}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f}}+\frac {f^{3/2} \text {arctanh}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 d^2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f}} \]

output
-1/8*(-4*a*c+3*b^2)*arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+a)^(1/2))/a^( 
5/2)/d-f*arctanh(1/2*(b*x+2*a)/a^(1/2)/(c*x^2+b*x+a)^(1/2))/d^2/a^(1/2)-1/ 
2*(c*x^2+b*x+a)^(1/2)/a/d/x^2+3/4*b*(c*x^2+b*x+a)^(1/2)/a^2/d/x-1/2*f^(3/2 
)*arctanh(1/2*(b*d^(1/2)-2*a*f^(1/2)+x*(2*c*d^(1/2)-b*f^(1/2)))/(c*x^2+b*x 
+a)^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2))/d^2/(c*d+a*f-b*d^(1/2)*f^(1/2 
))^(1/2)+1/2*f^(3/2)*arctanh(1/2*(b*d^(1/2)+2*a*f^(1/2)+x*(2*c*d^(1/2)+b*f 
^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2))/d^2/(c*d+a 
*f+b*d^(1/2)*f^(1/2))^(1/2)
 
3.2.1.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.67 (sec) , antiderivative size = 241, normalized size of antiderivative = 0.64 \[ \int \frac {1}{x^3 \sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\frac {\frac {d (-2 a+3 b x) \sqrt {a+x (b+c x)}}{a^2 x^2}-\frac {\left (3 b^2 d-4 a c d+8 a^2 f\right ) \text {arctanh}\left (\frac {-\sqrt {c} x+\sqrt {a+x (b+c x)}}{\sqrt {a}}\right )}{a^{5/2}}-2 f^2 \text {RootSum}\left [b^2 d-a^2 f-4 b \sqrt {c} d \text {$\#$1}+4 c d \text {$\#$1}^2+2 a f \text {$\#$1}^2-f \text {$\#$1}^4\&,\frac {a \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-\log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{-b \sqrt {c} d+2 c d \text {$\#$1}+a f \text {$\#$1}-f \text {$\#$1}^3}\&\right ]}{4 d^2} \]

input
Integrate[1/(x^3*Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]
 
output
((d*(-2*a + 3*b*x)*Sqrt[a + x*(b + c*x)])/(a^2*x^2) - ((3*b^2*d - 4*a*c*d 
+ 8*a^2*f)*ArcTanh[(-(Sqrt[c]*x) + Sqrt[a + x*(b + c*x)])/Sqrt[a]])/a^(5/2 
) - 2*f^2*RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1 + 4*c*d*#1^2 + 2*a*f*#1 
^2 - f*#1^4 & , (a*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - Log[-( 
Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2)/(-(b*Sqrt[c]*d) + 2*c*d*#1 
+ a*f*#1 - f*#1^3) & ])/(4*d^2)
 
3.2.1.3 Rubi [A] (verified)

Time = 0.97 (sec) , antiderivative size = 376, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^3 \left (d-f x^2\right ) \sqrt {a+b x+c x^2}} \, dx\)

\(\Big \downarrow \) 7276

\(\displaystyle \int \left (\frac {f^2 x}{d^2 \left (d-f x^2\right ) \sqrt {a+b x+c x^2}}+\frac {f}{d^2 x \sqrt {a+b x+c x^2}}+\frac {1}{d x^3 \sqrt {a+b x+c x^2}}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\left (3 b^2-4 a c\right ) \text {arctanh}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{8 a^{5/2} d}+\frac {3 b \sqrt {a+b x+c x^2}}{4 a^2 d x}-\frac {f^{3/2} \text {arctanh}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 d^2 \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}+\frac {f^{3/2} \text {arctanh}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 d^2 \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}-\frac {f \text {arctanh}\left (\frac {2 a+b x}{2 \sqrt {a} \sqrt {a+b x+c x^2}}\right )}{\sqrt {a} d^2}-\frac {\sqrt {a+b x+c x^2}}{2 a d x^2}\)

input
Int[1/(x^3*Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]
 
output
-1/2*Sqrt[a + b*x + c*x^2]/(a*d*x^2) + (3*b*Sqrt[a + b*x + c*x^2])/(4*a^2* 
d*x) - ((3*b^2 - 4*a*c)*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x^ 
2])])/(8*a^(5/2)*d) - (f*ArcTanh[(2*a + b*x)/(2*Sqrt[a]*Sqrt[a + b*x + c*x 
^2])])/(Sqrt[a]*d^2) - (f^(3/2)*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sq 
rt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x 
+ c*x^2])])/(2*d^2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]) + (f^(3/2)*ArcTanh 
[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b*S 
qrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*d^2*Sqrt[c*d + b*Sqrt[d] 
*Sqrt[f] + a*f])
 

3.2.1.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.2.1.4 Maple [A] (verified)

Time = 0.87 (sec) , antiderivative size = 457, normalized size of antiderivative = 1.22

method result size
risch \(-\frac {\sqrt {c \,x^{2}+b x +a}\, \left (-3 b x +2 a \right )}{4 a^{2} d \,x^{2}}-\frac {-\frac {4 f \,a^{2} \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{d \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}-\frac {4 f \,a^{2} \ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{d \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}-\frac {\left (-8 a^{2} f +4 a c d -3 b^{2} d \right ) \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{d \sqrt {a}}}{8 a^{2} d}\) \(457\)
default \(\frac {-\frac {\sqrt {c \,x^{2}+b x +a}}{2 a \,x^{2}}-\frac {3 b \left (-\frac {\sqrt {c \,x^{2}+b x +a}}{a x}+\frac {b \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{2 a^{\frac {3}{2}}}\right )}{4 a}+\frac {c \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{2 a^{\frac {3}{2}}}}{d}-\frac {f \ln \left (\frac {2 a +b x +2 \sqrt {a}\, \sqrt {c \,x^{2}+b x +a}}{x}\right )}{d^{2} \sqrt {a}}+\frac {f \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{2 d^{2} \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}+\frac {f \ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{2 d^{2} \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}\) \(516\)

input
int(1/x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)
 
output
-1/4*(c*x^2+b*x+a)^(1/2)*(-3*b*x+2*a)/a^2/d/x^2-1/8/a^2/d*(-4*f*a^2/d/(1/f 
*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+f*a+c*d)+1/f*(-2* 
c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2 
)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f* 
(-b*(d*f)^(1/2)+f*a+c*d))^(1/2))/(x+(d*f)^(1/2)/f))-4*f*a^2/d/((b*(d*f)^(1 
/2)+f*a+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+f*a+c*d)/f+(2*c*(d*f)^(1/2)+b*f 
)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/ 
f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f 
)^(1/2))/(x-(d*f)^(1/2)/f))-(-8*a^2*f+4*a*c*d-3*b^2*d)/d/a^(1/2)*ln((2*a+b 
*x+2*a^(1/2)*(c*x^2+b*x+a)^(1/2))/x))
 
3.2.1.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{x^3 \sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\text {Timed out} \]

input
integrate(1/x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="fricas")
 
output
Timed out
 
3.2.1.6 Sympy [F]

\[ \int \frac {1}{x^3 \sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=- \int \frac {1}{- d x^{3} \sqrt {a + b x + c x^{2}} + f x^{5} \sqrt {a + b x + c x^{2}}}\, dx \]

input
integrate(1/x**3/(c*x**2+b*x+a)**(1/2)/(-f*x**2+d),x)
 
output
-Integral(1/(-d*x**3*sqrt(a + b*x + c*x**2) + f*x**5*sqrt(a + b*x + c*x**2 
)), x)
 
3.2.1.7 Maxima [F]

\[ \int \frac {1}{x^3 \sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\int { -\frac {1}{\sqrt {c x^{2} + b x + a} {\left (f x^{2} - d\right )} x^{3}} \,d x } \]

input
integrate(1/x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="maxima")
 
output
-integrate(1/(sqrt(c*x^2 + b*x + a)*(f*x^2 - d)*x^3), x)
 
3.2.1.8 Giac [F(-2)]

Exception generated. \[ \int \frac {1}{x^3 \sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\text {Exception raised: TypeError} \]

input
integrate(1/x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument ValueDone
 
3.2.1.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^3 \sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx=\int \frac {1}{x^3\,\left (d-f\,x^2\right )\,\sqrt {c\,x^2+b\,x+a}} \,d x \]

input
int(1/(x^3*(d - f*x^2)*(a + b*x + c*x^2)^(1/2)),x)
 
output
int(1/(x^3*(d - f*x^2)*(a + b*x + c*x^2)^(1/2)), x)